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Order reconstruction in frustrated nematic twist cells
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Within the Landau—de Gennes theory of liquid crystals, we study the equilibrium configurations of a
nematic cell with twist boundary conditions. Under the assumption that the order @rmouniaxial on both
bounding plates, we find three separate classes of solutions, one of which contains the absolute energy mini-
mizer, atwistlike solution that exists for all values of the distarttdetween the plates. The solutions in the
remaining two classes exist only df exceeds a critical valud,. One class consists of metastable, twistlike
solutions, while the other consists of unstal#&changelikesolutions, where the eigenvalues Qf are ex-
changed across the cell. Whdr-d;, the metastable solution relaxes back to the absolute energy minimizer,
undergoing an order reconstruction somewhere within the cell. The critical dislaecgials, in general, a few
biaxial coherence lengths. This scenario applies to all the values of the boundary twist2huwhich thus
appears as a very special case, though it is the one more studied in the literature. In fact, when the directors
prescribed on the two plates are at right angles, two symmetric twistlike solutions merge continuously into an
exchangelike solution at the critical valueafvhere the latter becomes unstable. Our analysis shows how the
classical bifurcation associated with this phenomenamisldedby perturbing the boundary conditions.

DOI: 10.1103/PhysReVvE.68.021707 PACS nuner61.30.Gd, 61.30.Pq

I. INTRODUCTION under the assumption that the anchoring be strong on both
bounding plates. For weak anchorings, a similar lack of so-
Defects and microconfinements in liquid crystals are botHution had been already obtained in RES], but only within
very interesting subjects, still offering unsolved problems.the classical director theory: when the distance between the
Different as they may appear, these subjects have a commauates becomes smaller than a critical value, the bent director
feature, that is, materidfustration In the absence of exter- configuration ceases to be an equilibrium solution, and the
nal fields, frustration in nematic liquid crystals is ultimately energy minimizer is the uniform field with the least anchor-
produced by the bounding surfaces: indirectly when they dicing energy. Many studies further built on the outcomes of
tate the presence of defects in the bulk, and directly wheiRef.[2]. First, in Ref.[4] the analysis was extended to cover
they cause extreme confinements of the material. Both dealso weak anchoring conditions. More recently, the fluctua-
fects and microconfinements bear order reconstruction tions of both the eigenvalues and the eigenframe of the order
For defects, this was first shown by Schopohl and Sluckin inensor have been studied for the ground state of a hybrid cell
Ref. [1], who found that within the core of a disclination, to compute the Casimir forces in distorted, frustrated con-
two uniaxial states with orthogonal directors are changedigurations[5-7].
into each other through a transformation that does not in- In all these studies, however, the easy axes of the plates
volve any director rotation, but instead implies a wealth ofare invariably at right angles. Our analysis starts from relax-
biaxial configurations bridging the uniaxial limits. Likewise, ing this condition. The scenario we thus unveil could be
in a hybrid cell, which here serves as a paradigm of all consignificant also for more general confinements. We consider
fined nematic systems, Palffy-Muhoray, Gartland, and Kellya twist cell with strong anchoring on the two plates. The
[2] showed that the two orthogonal uniaxial directors pre-boundary states are prescribed to be uniaxial, while the in-
scribed on the plate®@ne planar and the other homeotrgpic ternal states can possibly be biaxial. If the easy axes on the
can be connected either through a director bend or througplates fail to be orthogonal, then there are two equilibrium
an order reconstruction which employs biaxial states. An intwisted configurations, one more strained than the other.
teresting result of Ref.2] is that when the cell thickness is These configurations are both locally stable. Upon decreas-
sufficiently small, only the order reconstruction exists as aring the distance between the plates, the less strained configu-
equilibrium configuration for the free energy of the cell. ration persists as an equilibrium solution, whereas the more
In the terminology used in both Ref4.,2], this surviving  strained configuration ceases to exist at a critical value of the
solution exhibits aneigenvalue exchangen the tensorial cell thickness. The “exchange” solution, which also only
description of the nematic order, two uniaxial states withexists above this critical thickness, is locally unstable and
orthogonal directors can indeed be connected with no eigemrmerges in with the more strained solution just when this
frame rotation by only changing the eigenvector that posiatter disappears.
sesses the dominant eigenvalue. This conclusion was reachedWe shall see how the symmetric “pitchfork” bifurcation
diagram associated with the/2-twist configuration trans-
forms into a perturbed diagram, with two disconnected
*Electronic address: bisi@dimat.unipv.it; branches, upon breaking the clockwise-counterclockwise
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tors, a process often calldafurcation unfolding We con-
clude that in the broken-symmetry case, if the alignment
within the cell were initially trapped into the metastable,
more strained configuration, then upon reducing the cell
thickness, it would be forced to fall onto the stable, less
strained configuration, where it would stay even once the
thickness is increased above the critical value. It is remark-
able that this structural transition still happens through an
order reconstruction, which is necessarily dynamical, as it is
accompanied by a discontinuity in the free energy.

The plan of the paper is as follows. In Sec. Il, we present FIG. 1. A cell bounded by two parallel plates.
the mathematical model that describes a nematic twist cell.
In Sec. lll, we study the energetics of the model and write (tr Q3)2
the equations that govern the equilibrium configurations. B?:=1— — (1)
These are then solved numerically in Sec. IV in a variety of (tr Q%)

cases. Section V is devoted to illustrating the unfolding and ) ) . 2
perturbation of the bifurcation diagram: a limit point, insteadWhich ranges in the intervg0,1]. In all uniaxial statesj

of a bifurcation, illuminates the scenario outlined above. In=0, While states with maximal biaxiality cor_respo_nd_ﬁé_
Sec. VI, we discuss the relevance of boundary conditions tg=1- Since trQ*=3 detQ, the states with maximal biaxiality
our outcomes, and the validity in our context of an approxi-are precisely those where d@t0, that is, where at least

mation sometimes employed in the literature. Our concluOne eigenvalue oQ vanishes. _
sions are then summarized in Sec. VII. We suppose that a nematic liquid crystal occupies the re-

gion B bounded by two parallel platesi2apart(see Fig. 1

Relative to the framée, g, ,e,} shown in Fig. 13 is repre-

sented as the sé={(x,y,z) € R¥|xe[—d,d]}. We impose
Most nematic liquid crystals can be thought of as com-uniaxial states at both plates. On the platexat—d, the

posed of rodlike molecules. A nematic state can be describegematic director is parallel te,, so that

by the order tenso®, a symmetric, traceless, second-rank

tensor that measures how much the probability distribution .

of the molecular long axis differs from being isotrofigee Q=Q :=Sb<ez®ez_§l)’ @

pp. 5657 of Ref[8]). SinceQ is a symmetric tensor, it can

be represented in the orthonormal basis of its eigenvectorgheres, is afixedscalar order parameter, which we will set

{e;,8,65} as equal to the bulk equilibrium value fa. On the plate ak

=d, the nematic director is rotated by the angig (normal-

ized to be in[0,7/2]), so that

Il. MODEL

3
Q=2 \ege,
B 1
Q=Q+:=sb( n0®no—§l) with ng:=cos¢ee,+sin¢ge, .
()

In a purely uniaxial setting, the nematic director would twist
within the cell from the orientatioe, to ny asx ranges from
—d tod. In general, there are two opposite such twists, with
one more strained than the other. They are mirror images of
Bach other only forpy=m/2, that is, when the boundary
grientations ofn are orthogonal. It is indeed the purpose of
s paper to find the biaxial structure developed by both of
these configurations and to seek other biaxial equilibrium
configurations reminiscent of the one first discovered in Ref.
[1] within a defect core, where two eigenvalues@fcross
each other and are eventually exchanged.
Q=s( nen— L) In general,Q is described by five independent scalar pa-
3) rameters. Here we exploit the particular symmetry of the
problem to reduce the number of parameters. The boundary
wherese[ — 3,1] is thescalarorder parameter, the unit vec- valuesQ~ andQ™ are indeed independent of the coordinates
tor n is the nematicdirector, and | is the identity tensor. y andz, and they both have, as an eigenvector. By requir-
Finally, when all eigenvalues o are distinct, the liquid ing these properties to hold f@ inside the cell, we arrive at
crystal is in a biaxial state. According to REf0|, thedegree the representation formuléin terms of Cartesian compo-
of biaxiality of Q can be defined as nents

where the eigenvalues; obey the constraint
)\1+)\2+ )\320

implied by the condition tQ=0. Moreover, each eigen-
value \; ranges in the intervgl—3,5] (see pp. 14—18 of
Ref.[9]): the lower bound corresponds to the case where th
molecules are on average orthogonaktp whereas the up-
per bound corresponds to the case where the molecules
on average aligned alorgy. In the isotropic phas& van-
ishes. When two eigenvalues @fcoincide, the liquid crystal
is in a uniaxial state, an® can be recast in the form
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—2q; O 0 Ill. FREE ENERGY

[Q]=| O 0:— 0> dz |, (4) In this section, we build the free-energy functional that is
0 q q+9 stationary in all equilibrium configurations within the twist
3 1 cell B described above.

whereq,, g,, andqs are functions ok only. This represen-

tation automatically obeys the constraintr=0. Hereafter, A. Bulk potential
we shall refer to Eq(4) as theq representatiorof Q. The In the classical Landau—de Gennes the@ge Ch. 2 of
parameter; measures the rotation around teaxis of the  Ref. [8]), the bulk potential that describes a homogeneous
eigenframe ofQ. The eigenvalue relative te, is \;= phase is given by
—20,, while the remaining eigenvalues are
fb==é tr QZ—Etr Q3+ E(tr Q%2 €)
A2=01—V02+0d3, A3=0:+ V0203 2 3 4

We often employ the notation=(q;,q,,qs) to denote a HereB andC are positive constitutive parameters, while
point in theq space. It follows from the bounds on the ei- depends on the temperatufein the form A=a(T—T%),
genvalues ofQ that all admissibleg’s lie inside the cone With a a positive constant an@* the nematicsupercooling

with axis alongq, defined by the inequalities temperature. In thg representation, the invariants Qfread
as
1 1 1
—3sm=g VJotd=a+tg. tr Q*=2(3qi+a3+0a3), tr Q*=—6a(ai—a5—a3),
€)

The origin of theg space corresponds to the isotropic stategnq the bulk potential8) takes the form
(Q=0). ltis crucial to our analysis to identify in thggspace

all uniaxial states. We find that they can be of one of two fo=A(3q+05+q3)+2Ba.(q7— 95— q3)
types, either uniaxial with director along theaxis (normal s o
to the boundary surfacesr uniaxial with director in they/-z +C(3q5+095+093)% (10

plane(in the plane of the boundary surfage$he line
In a homogeneous phase, the eigenvector® othough

0,=03=0 (5) arbitrary, are fixed in space. Letting them coincide with the
frame {g,,g,,e,}, we can adopt foQ the g representation

represents uniaxial states of the former type, since along With qz=0, so thatq; itself represents a measure of biaxi-

\,=\3, while the conical surface ality. If for any order tensof, either uniaxial or biaxial, we
formally define the scalar order parametethrough the
992=05+03 (6)  equation
o . 2
corresponds to uniaxial states of the latter type: more pre- tr Q2=552=2(3q§+q§),

cisely, \;=\3 whenqg;<0, and\;=X, whenq;>0. This

geometric representation of the uniaxial states was first in- .

troduced in Ref[11] and then used in Ref§12,13 to clas-  then for positives we can expresg; as
sify both surface and bulk defects arising in nematic liquid 1

crystals. As we shall see, this representation plays a key role = -Js2-392
in detecting order reconstruction. 9 3 42
The boundary condition&) and(3), in the q representa-
tion, take the form and Eq.(10) for f,, (with g3=0) can be written as
Sb Sb fy=s| A2 2B\F=3 2(s?—1202) + Tes (12)
G(-d=7, qald=7, (73 b= 3 9 a2 d2) T 3 :

S S For any givens>0, this function is minimized by,=0,
Oo(—d)= > go(d)= 2 cos 20, (7py  and we conclude that in the absence of any externally im-
2 2 posed frustration, the only stable equilibrium states would be
uniaxial. In this limit, Eq.(11) becomes

G~ =0, Gald)= 2 sin2do. (70 2

1 1
fo(s):§Asz— 2—7853+§CS4. (12

Both pointsq(—d) and g(d) belong to the uniaxial cone The functionf, above possesses three stationary points:
defined by Eq(6), for all values ofs,, . one is attained a=0, and the other two are attained at
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25 Other authorq7,15,1q instead prefer to defing:=(T
—T*)/(Ty,—T*) as reduced temperature. It is easily seen
. that #=87/9. In our development below, we shall assume

.' thatf#<1, so that an ordered phase exists in the bulk. By Eq.

20r

£, kI’

(14), we can recast Eq13) as
S.:=S, (11— 0).

The equilibrium value o, which would be preferred in the
] undistorted bulk ford<3, is s,=s, , and this is the value
we shall use fors,, in both boundary condition&) and (3).

B. Elastic energy and equilibrium equations

. The free energy consists of two distinct contributions: the
bulk potentialfy,, which inhibits departures o from the
_ v preferred uniaxial statéand its preferred degree of orienta-
y i tional ordej, and the elastic enerdy,, which penalizes dis-
i tortions in space of the eigenframe @f and spatial varia-
i tions in the degree of order. Thus, the free-energy functional
Voo F takes the general form

HQl= fB(fe+fb)dV’ (15

wheredV is volume measure. Here we adopt fQrthe fol-

FIG. 2. The uniaxial bulk potential functiofy against the scalar lowing one-constant approximation:

order parametes at the critical temperatureb=T** (superheat-
ing), Ty, (nematic-isotropic transitionandT* (supercooling and L
at a temperaturdf <T* (dashed ling The parametera=0.20 fo==|VQJ?
x 100 JIKm?, B=7.2x10P Jn?, and C=8.8x10° Jim? corre- 2
spond to those measured for 5@Byano-4n-pentylbiphenyl in

Ref. [14]. whereL>0 is an elastic constant assumed independent of

the temperaturd.
> When Q is prescribed orv3, the equilibrium equations
. BxyB"-24AC for F can be obtained as follows. We pertugbby setting

(13
Q.:=Q+eU,

where U is a symmetric, traceless tensor field subject to
U|,5=0. Heeding that botl® andU are symmetric, we give
the first variation ofF the following expression:

When A=A, :=B?/24C, s_ and s, coalesce in a single
value s, :=B/4C, where the graph of, againsts has an
inflection point. The temperatur@** :=T* + B%/24aC at

which this happens is called ttmiperheatingtemperature.

At the temperaturd y,:=T* + B%/27aC<T**, the function dAQ,]
fo in Eqg. (12) has two distinct minimizers, with the same OFQI(V):= g °
minimum, namelys=0 ands=sy:=4s, /3 (see Fig. 2 This e le=o
is the temperature where the transition from nematic to iso-
tropic takes place. Finally, at the supercooling temperature :f {LVQ-VU+[AQ—-BQ?
T*, the graph off, develops an inflection point &=0: B
below this temperature, the isotropic state fails to be meta- 2 )
stable. We have found it convenient to introduce ribduced FCr QIQFA]-UpdV,
temperature defined as where\ is an unknown Lagrange multiplier field. Integrating
by parts in the preceding integral and using the boundary
A T-T* conditions onU, we arrive at
= =———. (14
Ax T —T*

5f[Q](U)=f [-LAQ+AQ-BQ?

Thus#@ is the temperature below the supercooling point mea- b

sured in units of the temperature range where both nematic +C(tr Q3)Q+\17-UdV,

and isotropic phases coexist; for low-molecular-weight liquid

crystals, this range is typically 1°-2° wide, depending onwhereAQ is the Laplacian ofQ. From the arbitrariness of
the purity of the sample. U, we conclude that
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B 2 2
2 2 2y — L[ & dQ 0 —
~LAQ+AQ—BQ™+C(tr Q9)Q+7(tr Q9)I=0, f[Q]zFof 3] (V1-6+1) o +gtr Q?
(16 - §
A3 1 n2\2
where\ has been determined by requiring the solutions to be —z QM+ g(rQY)
traceless.

In the special case of interest to U3, depends on the

— 2 2 i
single space variable and so Eq(16) becomes whereF:=3A, B<d/4C~. To avoid clutter, we drop all bars,

thus arriving at the following nondimensional form of the
free-energy functional:

—LQ"+AQ—BQ2+C(tr QZ)QJrE(tr Q*)1=0, (17)
3 f[Q] gb 2, 2
FIQ)= |20l e

where a prime denotes differentiation with respeckid®y

taking the inner product of both sides of E4.7) with Q’, 2 1
we obtain the first integral —3tr Q3+ g(tr Q?)?|dx. (20)
__|Q 12+ tr Qz—Etr Q3+ (tr Q?)2=—H, In the g representation for the scaled order tensor, the
19 dimensionless free energy takes the form

1 2
whereH is an integration constant. This equation, which has F[q]= Zf [5—2(\/1— 6+ 1)[3(a5)2+ (a5)?+(a3)?]
the appearance of a conservation law, has a further conse- d

quence, which we record here for later use. Sinc®3tt

- 6
=2(|Q"|?*+Q-Q"), by Egs.(17) and(18), we arrive at + g(3q§+q§+q§)+2q1(q§_q§_q§)

L 2y _ 2. 3, 3 2y2 1
E(tr Q ) =2H+2Atr Q —§B tr Q +§C(tr Q ) , +Z(3q§+q§+q§)2 dx, (21)
(19

I , 2. , o s and the equilibrium equations féf read
an equilibrium equation for 1< in which the invariant tiQ

also appears.
—w 6+1)d;= 6q1 S (@2 633D
C. Nondimensional form
To prepare the way for the numerical computations to be
performed in the following section, it is convenient to write

in nondimensional form both the functional and the equi-
librium equations associated with it. To this end, we first 2

introduce thebiaxial coherence lengtlj, as _( [1-6+1)q5= 6q2 2q1q2+%(3q§+q§+q§)q2,
1/2

I\JII—‘

(3ql+Q2+Q3)Q1y (229

U [ ac (22
= Vs, B2(\1-6+1)

1
—(\/ 6+1) 20,03+ = (392 +05+03)qs.
This length clearly depends on the temperature. Apart from d? 4= 6q3 tafls 2 e s

some nominal differences, this length is precisely the same (229
as the one introduced in Ref16] (see, in particular, the
Appendix there for a rationale behind this definitioMore- ~ This coupled system of ordinary differential equations is thus
over, we set the nondimensional form of Eq17) and the cornerstone of
the numerical modeling to follow.
o X A special solution of this system deserves attentior If
Q:=—0Q, sy=—, Xi= 1, =—8, thens,=4 andq1(+d) . Indeed, for this special

* choice of 8, q,(x)=% solves Eq (22@ as can be seen by
direct inspection. So, at least in this particular case, the ei-
wheres, is the bulk equilibrium value of at the superheat- genvalue ofQ along the directiorg, remains constant across
ing temperaturel** (as defined in Sec. lll A and we ex- the cell. This will often be employed below as a comparison
pressL in terms of&,. We thus obtain case.
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andAUTO 2000[25]. MATLAB is a commercial scientific com-
puting and visualization environment. With its high-level
language syntax, wealth of mathematical library software,
and integrated graphics, it is an excellent tool for the numeri-
cal modeling of a wide array of problems. We have used
primarily the MATLAB graphics, as well as a code from its
ODE suite, bvp4c, for the solution of general nonlinear sys-
tems of ordinary differential equations.

The MATLAB BVP solver is not equipped for numerical
bifurcation analysis, and for that we have relied upon the
AUTO package. This venerable code has been a mainstay of
the numerical bifurcation and dynamical systems communi-
ties for over two decades. FODE boundary value problems,
the package has the capabilities to perform parameter con-
tinuation, detection of bifurcation points, and stable numeri-
cal calculation of limit points. It is also capable of monitor-
ing auxiliary integral functionals, such as the free energy,
and of generating a two-parameter locus of fold points. We
have used all of these features to obtain the results we dis-
cuss below.

V. BIFURCATION UNFOLDING

As anticipated in Sec. 1V, solutions to Eq22) are found
in three different classes. The members of two of them re-
semble a regular twist, whilst the members of the third class
areexchangesolutions, here called the solutions for short,
which mimic the solution of Palffy-Muhoragt al.[2] char-

FIG. 3. Order-tensor ellipsoids against position across the celI?Cter'zed by a local b'ax,'al tranS|t|qn. For every value of
in units of the biaxial coherence lenggh, for three basic solutions: $oe]0,7/2[, _the tota_l tW'S_t Of, the director across the cell
opposite twistsgtop and middlgand eigenvalue exchangeottom.  1OF the two twist solutions is eithep, or m— ¢o: hereafter,
Ellipsoids are oriented along the eigenframe of the order te@sarr ~ the former solutions will be referred to as the solutions,
each point; their semiaxes are the eigenvalue® afppropriately ~ and the latter as the, solutions. For¢,=0, coherently
augmented and scaled to the largest eigenvalue at the boundakyith the normalization adopted here, the solution is aw
Parameters: twist angleé,=/2, reduced temperaturé=—8,  twist and the corresponding_ solution is the uniform state

x/&b 6 -1

and dimensionless cell half-widi/' £,=6. of the director. Forgpy= /2, 7, and r_ solutions are sym-
metric to one another, but there is no intrinsic way to tell
IV. NUMERICAL MODELING AND EQUILIBRIUM which is which because they both exhibit the same total
CONFIGURATIONS twist. However, such an ambiguity plays no role in our de-

velopment. Our calculations show thatra solution always

For each fixed value of the twist anglls,, reduced tem- minimizes the free-energy functionlin Eq. (15), whereas
peratured, and dimensionless half-width of the cedl/¢,, all 7, solutions are at most metastable, andyalolutions
we determine the solutions for the scalar fietdsq,,q; to  are always locally unstable. A clear indication of this insta-
the equilibrium equation§22) subject to the boundary con- bility is that an initial guess must be appropriately built to
ditions (7). In general, Eqs(22) have more than one solu- compute ay solution through a numerical parameter con-
tion. First, the same boundary conditions could be obeyed bginuation.
two twist solutions, corresponding to opposite rotations of
the eigenframe of) across the cell. In addition, a third type
of solution can be found in which the liquid crystal is
uniaxial along the direction imposed by the boundary condi- Recalling our discussion in Sec. Ill A, we can represent
tions on the plates, but, in the neighborhood of the center o$olutions of Eqs(22) by a curveC in theq space( intersects
the cell, it tends to become uniaxial in the direction normalthe loci(5) and(6) wherever it attains a uniaxial state. Equa-
to the boundaries, namelg,, with a negative order param- tion (78 shows thaty;, has one and the same value on the
eter. lllustrations of these three types of solutions are givemplates bounding the cell. Moreover, numerical solutions of
in Fig. 3, where both the eigenvalues and the eigenvectors dgs.(22) reveal thai, is nearly constant across the cell. As
Q are pictorially represented through ellipsoids. discussed in Sec. IllA,q; is indeed constant, when

Very good software tools are available for the numericalf= —8. This suggests one to study the projectiorCainto
modeling of problems such as the one at hand. For this inthe (q,,q3) plane, for all solutions of Eq922). We shall
vestigation, we have relied upeamTLAB [24], AUTO 97 [17], refer to such a projection as to tpelar plot of the solution.

A. Polar plots
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FIG. 4. Polar plot ofg,, g3 components of order-tensor equi- FIG. 5. Polar plot ofd, g; components of order-tensor equi-

librium solutions. Parameters: twist anglg= 0.45x, reduced tem- librium solutions. Parameters: twist angﬁ%_:wlz,_ reduced tem-
perature 6= —8, and several values of dimensionless cell half- perature 9=—8, and several values of dimensionless cell half-

width d/&,=<8. Upper curves correspond to less twisted solutionsWldth d/é, ranging between 2.475 and 8 in the sense indicated by

. L . . the arrows. Exchange solutions run along the horizontal axis for all
7_, approaching uniaxial states on the circumferencel/gdg in-

. : . values ofd/ &, . The remaining, symmetric curves correspond to the
creases. Lower solid curves correspond to more twisted solutions - ; : o

. . - ssymmetrlc twisted solutions. These approach uniaxial states on the
7., while lower dashed curves are eigenvalue-exchange solution

Y. These merge in the heavy line d&Z, decreases to the critical circumference ad/ ¢, increases, and they merge into the exchange

value d/¢,~3.33. The arrows indicate in which sengé, is in- solution asd/ &, decreases to the critical valu#é,=2.47, below

. ; -which the twisted solutions fail to exist. The solutions in real space
creased for the different classes of solutions. The center of the cir- . . .

. 7 -.corresponding to the largest valuedig, considered here are illus-
cumference corresponds to the whole family of uniaxial states Wltqrated in Fig. 3

negative order parameter described by &).

As will soon be shown, polar plots are crucial to understandg=0, as shown in Fig. 5¢ solutions now exist for values of
the patterns of orientational order for solutions in differentd/ £, down to 0 and all their polar plots coalesce into the line
classes. We see from Ed¥hb)—(7c) that all polar plots must  segment joiningP_ and P . As the cell thicknessl/&, is

pass through two pointd®_ andP. , on the circleq;+0q3  decreased, twist solutions become more and more strained
=s2/4, which is the (,,q;) projection of the intersection and, correspondingly, more and more biaxial near the center
between the uniaxial con) and the planey;=s,/6. We  of the cell, until a critical value is reached/¢,=2.47 for
choose polar coordinateg (9) in the (q,,q3) plane so that #=—8), where they merge with thg solution. Below this
P_=(s,/2,0) andP ,=(sp/2,2¢). Thus,P_ represents the threshold, no twist solution exists.

boundary condition on the lower plate, aRd that on the Furthermore, the limiting case wherg,—0 also de-
upper plate. Figure 4 shows typical polar plots for —8, serves attention. Here, the solution tends to represent the
and ¢¢=0.45. uniform state across the cell, whereas thesolution tends

We see that_ solutions tend to become uniaxial acrossto be aw twist. Polar plots with¢y=0 are shown in Fig. 6.
the whole cell, wherd/ ¢, increases. Moreover, they all re- A pictorial way to obtain Fig. 6 from Fig. 4 is the following.
side in the circular sector above the line segment joiting  We move the pointP, along the circumference in Fig. 4
andP, , while both7, andy solutions reside in the circular until it coalesces witiP_ . Correspondingly, the polar plots
sector below this segment. Upon decreasihg,, the single of all 7_ solutions collapse into the singletoR=P_
7, and y solutions approach each another until a critical=P ., while the polar plots of bothr, andy solutions turn
value is reachede.g.,d/&,=3.33 for 6= —8), where they around the origin. We see from Fig. 6 that the uniaxial line
merge together. For lower values @fé,,, only 7_ solutions  (5) still exerts the same topological separation as above. As
exist. For a given value a/¢&,, the corresponding_ solu-  in Fig. 4, there is a critical value of the cell thickneg,, at
tion is the absolute energy minimizer; the equilibrium solu-which 7, and y solutions merge together. It turns out that
tions with higher energy, in either class or y, can relax to  this threshold increases, as the intuition suggests: indeed, for
it only by crossing the origin of theg,,qs) plane: corre- 6=—8, merging of solutions occurs whed/§,=7.72.
spondingly, the curv€ would cross the uniaxial lin€5) at  Again, upon further decreasirdfé,, only _ solutions sur-
the point where the order reconstruction actually occurs irvive.
the cell. The line(5) thus separates the energy minimizers However, they solution seems somewhat artificial in this
from all other equilibrium solutions. context, as the eigenvalue exchange merely accommodates
A slightly different scenario occurs for the symmetric casean effectives rotation of the eigenframe d via a biaxial
where ¢o=7/2. Here,7_ and 7, solutions are symmetric, transition which occurs in a narrow region around the middle
and so are their polar plots with respect to the lineof the cell. This rotation is shown in Fig. 7: the more the
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FIG. 6. Polar plot ofgq,, g3 components of order-tensor equi-
librium solutions. Parameters: twist anglg=0, reduced tempera- 1
ture 6=—8, and several values of dimensionless cell half-width 01
d/§,=<20. Solid curves correspond te-twist solutions, approach- _;i ¥y
ing uniaxial states on the circumferenceds, increases. Dashed
curves correspond to eigenvalue-exchange solutions. These merge
in the heavy line agl/¢, decreases to the critical valu#y¢,
=7.72.

ratio d/ &, increases, the narrower becomes the region where 4 -0

fthe r_eorlentatlon takes place. This behavior can also be_ read FIG. 7. Order-tensor ellipsoids against position across the cell,
in Fig. 6 where the polar plots of the exchange solutionsy, nits of the biaxial coherence lenggh, for three basic solutions:
approach a peculiar curve in the limit cased#g,—: this  niform uniaxial alignmenttop), 7 twist (middle), and eigenvalue-
curve moves fronP along the upper-left quadrant until the exchange solutiotbottom. Ellipsoids are oriented along the eigen-
point (s,/2,7/2) is reached; then it suddenly jumps to the frame of the order tensa® at each point; their semiaxes are the
opposite point §,/2,37/2) and then travels back ® along  eigenvalues of) appropriately augmented and scaled to the largest
the lower-left quadrant. eigenvalue at the boundary. Parameters: twist apgte0, reduced
temperatured= — 8, and dimensionless cell half-width &,= 14.

B. Bif tion di
furcation diagrams to these values ofp,: they are labeleda), (b), and (c),

Inspection of the polar plots also suggests how to choosgespectively, and all have three branches. The bran¢h at
the parameter to capture the behavior of the solutions in a=s, /2, which equals 2 fog=—8, corresponds to the uni-
bifurcation diagram. In fact, for a fixed value of the cell form state with director along, across the whole cell. The
thickness, along any polar plot the function(dz,d3)  negative branches ¢8) represent the metastabtetwist and
:=4/g5+ Q3 attains its minimum in a single point. The func- the corresponding solution. The positive branch ¢b) ex-
tion p measures the distance of a solution from the uniaxialsts regardless of the value df£,, and it approaches the
loci (5) and (6): wherep=0, the corresponding solution is value r=0.313 whend/&, goes to 0. In this limit, allr_
uniaxial along the directiore,, orthogonal to the plates; solutions have a high degree of biaxiality in the center of the
wherep=s,/2, the solution is uniaxial along a direction par- cell, while they become closer and closer to a pure uniaxial
allel to the plates. twist whend/ ¢, is large. The corresponding, andy solu-

Given the role of topological separation played by thetions are represented by the negative branches of(bihe
origin of the (@,,qs) plane, we can introduce the following Upon increasingp,, the turning point where these solutions

dimensionless bifurcation parameter: merge together moves towards theaxis that is indeed
_ reached whewy,= 7/2, where the bifurcation diagram turns
r:==minp(dz,qs), into the pitchfork(c). In the jargon of bifurcation analysis

and singularity theory, we can say that the twist angle
where the minimum is computed along a polar plot, and theprovides auniversal unfoldingof the one-parameter, sym-
sign is positive forr_ solutions and negative for all others. metric pitchfork (see, e.g., the review paper Rgt8], and
Figure 8 shows some bifurcation diagrams, where the parameferences thereinThe dotted curve in Fig. 8 is thepinodal
eterr is plotted against the cell dimensionless half-width curvethat separates metastable states from unstable states: it
d/¢,, for 6=—8 and three values op,, that is, ¢y=0, can be viewed as the locus of the turning points of the dia-
0.45r, andwr/2. Three families of lines correspond in Fig. 8 gram, as a function of,.
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(b)

0 2 4 d/&b 6 8 10
FIG. 8. Bifurcation diagram of against the dimensionless half-
width d/&, of the cell, for several solution paths. Parameters: re-
duced temperaturd=—8, total twist angles(a ¢,=0, (b) ¢q
=0.45m, and(c) ¢o= /2. Curves: solidmetastablg dashedlo-
cally unstablg and dottedspinodal curve

FIG. 9. Polar plot ofg,, g3 components of order-tensor equi-
librium solutions with special biaxial boundary conditions. Param-
eters: twist anglep,= 0.45m, reduced temperatu= — 8, param-

One feature of the bifurcation diagram of Fig. 8 can beeter of biaxialitye = — 0.2, and several values of dimensionless cell
explained analytically: the asymptotic behaviorof solu-  half-width d/£,<8. Upper curves correspond to less twisted solu-
tions whend/é,<1. Regardingd/¢, as a perturbation pa- tions r_, approaching uniaxial states on the circumference/dg
rameter in Egs(22), and using the exact solutions of these increases. Lower solid curves correspond to more twisted solutions
equations for the limiting case whedéé, =0, we can prove 7., while lower dashed curves are eigenvalue-exchange solutions
thatr has the following parabolic behavior: x. These merge in the heavy line d&f, decreases to the critical
value d/§,=3.10. The arrows indicate for the different classes of

s 1 q\2 solutions in which sensé/ ¢, is increased.
b
r= cos¢o[ 1- ()

2 2(V1-6+1) \éb Sp Sp

Qo(—d)=5(1+e), Qad)==(1+e)cos 2po,
X g—%+s—g(3+5co§¢) +0 a) (239
6 3 48 0 &) |
Sb .

Similar computations have been performed for values of Gs(—d)=0, qs(d)=-(1+e)sin2¢,. (23D

0<—8; in particular, we have produced polar plots and bi-

furcation diagrams ford=—48 and 6= —4899: their fea- In the q space, these boundary points live away from the

tures were found to be qualitatively the same as those showiiaxial cone(6) for everye #0; in particular, fore >0 they

here, quantitatively, the turning point approachesrtfexis  are both outside this cone, while far<0 they are both

as 0 decreases. inside it. The order tensd® ™~ corresponding ta(—d) can
then be represented as

VI. DISCUSSION

In this section we discuss two separate questions that Q:s< e®e,— EI
could be raised quite naturally at this stage. One is about 3
boundary conditions, which here have systematically bee%here
taken as uniaxial on both plates. The other is about the va-
lidity of an approximation often used in the analysis of the
biaxial structure of defects, which here has systematically
been ignored.

+t(e®e—g®e), (24)

3 1
1+—¢|sp andt:Zssb. (25

STt g

It is clear from Eqs(25) that fore <0 the molecules on the
lower plate are less oriented alorg than they are fore

The uniaxial boundary conditions imposed on the two>0: the boundary biaxiality introduced in E¢24) has a
plates of the cell are represented by EG8. We now alter  disordering effect in the former case and an ordering effect in
these equations to accommodate a special class of biaxitile latter case. The order tengQi* corresponding tay(d)
boundary conditions. We leave the conditions fpr un-  has the same eigenvalues@s and an eigenframe rotated
changed, while we write those for, andqs as follows by the angleg, aboute, .

A. Biaxial boundary conditions
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Figure 9 shows the polar plots in thg,(,q3) plane of the det @
solutions to EQgs.(22) subject to Egs.(7a and (23), for
e=—0.2 and ¢y=0.45r. Again, all solutions can be
grouped in three different classes, and their behavior appar-
ently parallels that of the solutions far=0. In particular,
the uniaxial line(5) still separates_ solutions from all oth-
ers: it must be traversed in any relaxation process starting
from the 7. solution when this ceases to exist.

B. Lyuksyutov constraint

In Ref.[19], Lyuksyutov proposed an approximate mini-
mization of the functional in Eq(15), which has been often
employed to explore the fine structure of defect cores
[15,20. This method relies on the observation that whenever
in Eq. (8) B<\/AC, one can treat the ©®° term inf, as a
small perturbation and first minimize the dominant part of
the bulk potential, that is,

FIG. 10. The graph of d&® through the cell for both &_ and
a y solution (dashed and solid line, respectivelyParameters: re-
A C duced temperaturé= — 8, twist angle¢,= 0.45r, and dimension-
fb:E tr Q2+ Z(tr Q2)2, less half-width of the celtl/£,=8.

thus obtaining directors. For a sufficiently large separatidrof the plates,

A there are three different solutions to this equilibrium prob-
tr Q%=— —. (26) lem: two of them exhibit opposite twists of the eigenframe of
¢ the order tenso®, whilst the third one exhibits an exchange
in the eigenvalues 0f). The less twisted solution among
these is always the energy minimizer; it exists for all values
L B of d. On the contrary, the other two solutions exist only if
P[Q]:f §|VQ|2—§tr Q®|dV is greater than a critical valud,, in the range of a few
o biaxial coherence lengths:@>d., the exchange solution is
can be minimized subject to constrai@6). This approach, |ocally unstable, while the more twisted solution is meta-
though based on a rather crude approximation, makes Htable. Atd=d,, these two branches of solutions merge to-
easier to obtain analytic results from the Euler-Lagrangeyether and both disappear. When this happens, the system
equations for7*, as shown, for example, in Refsl5,21.  relaxes back to the energy minimizer with a jump in the free
Sometimes these approximate results have formed the basipergy: an order reconstruction then takes place on a plane in
for deeper numerical explorations of the completethe cell where the order tensor traverses a uniaxial state with
Landau—de Gennes modél2,23. negative scalar order parameter and director orthogonal to
The question then arises of probing the validity of con-the plates of the cell.
straint(26) in the problem solved here. This issue is indeed This scenario applies to every choice of the total twist
related to the grOWth of the degree of bIaXIaIIty within the ang|e across the cell but/2: when the two boundary direc-
cell. Since tQ%=3 detQ, it follows from Egs.(1) and(19)  tors are at right angles, which is the case most studied in the
that on the equilibrium configurations fof, Eq. (26) is sat- |iterature, the two opposite twisted solutions merge continu-
isfied only if detQ is a specific constant. Thus, the lack of ously into the exchange solution at a critical value of the
uniformity in the graph of de® somewhere within the cell is  distance between the plates. Such a behavior, actually re-
an unmistakable sign that the Lyuksyutov constraint cannoflecting the higher symmetry in the/2 twist, is, however,
be valid there. As shown in Fig. 10, the graph of Qedcross  rather peculiar, as it isinfoldedby any perturbation in the
the cell is quite different for a_ and ay solution: it is more  alignment of the boundary directors. All transitions studied
uniform in the center than near the plates om_asolution, in this paper occur when the distance between the plates is
while it is more uniform near the plates than in the center forreduced down to a few biaxial coherence lenghts. While
a x solution. Moreover, for gy solution the less uniform these distances are indeed very small, the outcomes of our
detQ is, the more it approaches zero, that is, the higher is thetudy are in principle applicable to confinements induced by
degree of biaxiality. In other words, the Lyuksyutov con- some external field.
straint is violated just to allow more biaxiality in the cell.

Then the modified free energy
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