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Order reconstruction in frustrated nematic twist cells
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Within the Landau–de Gennes theory of liquid crystals, we study the equilibrium configurations of a
nematic cell with twist boundary conditions. Under the assumption that the order tensorQ be uniaxial on both
bounding plates, we find three separate classes of solutions, one of which contains the absolute energy mini-
mizer, atwistlike solution that exists for all values of the distanced between the plates. The solutions in the
remaining two classes exist only ifd exceeds a critical valuedc . One class consists of metastable, twistlike
solutions, while the other consists of unstable,exchangelikesolutions, where the eigenvalues ofQ are ex-
changed across the cell. Whend5dc , the metastable solution relaxes back to the absolute energy minimizer,
undergoing an order reconstruction somewhere within the cell. The critical distancedc equals, in general, a few
biaxial coherence lengths. This scenario applies to all the values of the boundary twist butp/2, which thus
appears as a very special case, though it is the one more studied in the literature. In fact, when the directors
prescribed on the two plates are at right angles, two symmetric twistlike solutions merge continuously into an
exchangelike solution at the critical value ofd where the latter becomes unstable. Our analysis shows how the
classical bifurcation associated with this phenomenon isunfoldedby perturbing the boundary conditions.

DOI: 10.1103/PhysRevE.68.021707 PACS number~s!: 61.30.Gd, 61.30.Pq
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I. INTRODUCTION

Defects and microconfinements in liquid crystals are b
very interesting subjects, still offering unsolved problem
Different as they may appear, these subjects have a com
feature, that is, materialfrustration. In the absence of exter
nal fields, frustration in nematic liquid crystals is ultimate
produced by the bounding surfaces: indirectly when they d
tate the presence of defects in the bulk, and directly w
they cause extreme confinements of the material. Both
fects and microconfinements bear onorder reconstruction.
For defects, this was first shown by Schopohl and Sluckin
Ref. @1#, who found that within the core of a disclination
two uniaxial states with orthogonal directors are chang
into each other through a transformation that does not
volve any director rotation, but instead implies a wealth
biaxial configurations bridging the uniaxial limits. Likewis
in a hybrid cell, which here serves as a paradigm of all c
fined nematic systems, Palffy-Muhoray, Gartland, and Ke
@2# showed that the two orthogonal uniaxial directors p
scribed on the plates~one planar and the other homeotrop!
can be connected either through a director bend or thro
an order reconstruction which employs biaxial states. An
teresting result of Ref.@2# is that when the cell thickness i
sufficiently small, only the order reconstruction exists as
equilibrium configuration for the free energy of the cell.

In the terminology used in both Refs.@1,2#, this surviving
solution exhibits aneigenvalue exchange: in the tensorial
description of the nematic order, two uniaxial states w
orthogonal directors can indeed be connected with no eig
frame rotation by only changing the eigenvector that p
sesses the dominant eigenvalue. This conclusion was rea
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under the assumption that the anchoring be strong on b
bounding plates. For weak anchorings, a similar lack of
lution had been already obtained in Ref.@3#, but only within
the classical director theory: when the distance between
plates becomes smaller than a critical value, the bent dire
configuration ceases to be an equilibrium solution, and
energy minimizer is the uniform field with the least ancho
ing energy. Many studies further built on the outcomes
Ref. @2#. First, in Ref.@4# the analysis was extended to cov
also weak anchoring conditions. More recently, the fluct
tions of both the eigenvalues and the eigenframe of the o
tensor have been studied for the ground state of a hybrid
to compute the Casimir forces in distorted, frustrated c
figurations@5–7#.

In all these studies, however, the easy axes of the pl
are invariably at right angles. Our analysis starts from rel
ing this condition. The scenario we thus unveil could
significant also for more general confinements. We cons
a twist cell with strong anchoring on the two plates. T
boundary states are prescribed to be uniaxial, while the
ternal states can possibly be biaxial. If the easy axes on
plates fail to be orthogonal, then there are two equilibriu
twisted configurations, one more strained than the ot
These configurations are both locally stable. Upon decre
ing the distance between the plates, the less strained con
ration persists as an equilibrium solution, whereas the m
strained configuration ceases to exist at a critical value of
cell thickness. The ‘‘exchange’’ solution, which also on
exists above this critical thickness, is locally unstable a
merges in with the more strained solution just when t
latter disappears.

We shall see how the symmetric ‘‘pitchfork’’ bifurcatio
diagram associated with thep/2-twist configuration trans-
forms into a perturbed diagram, with two disconnect
branches, upon breaking the clockwise-counterclockw
symmetry in the boundary conditions with orthogonal dire
©2003 The American Physical Society07-1
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tors, a process often calledbifurcation unfolding. We con-
clude that in the broken-symmetry case, if the alignm
within the cell were initially trapped into the metastab
more strained configuration, then upon reducing the
thickness, it would be forced to fall onto the stable, le
strained configuration, where it would stay even once
thickness is increased above the critical value. It is rema
able that this structural transition still happens through
order reconstruction, which is necessarily dynamical, as
accompanied by a discontinuity in the free energy.

The plan of the paper is as follows. In Sec. II, we pres
the mathematical model that describes a nematic twist c
In Sec. III, we study the energetics of the model and w
the equations that govern the equilibrium configuratio
These are then solved numerically in Sec. IV in a variety
cases. Section V is devoted to illustrating the unfolding a
perturbation of the bifurcation diagram: a limit point, inste
of a bifurcation, illuminates the scenario outlined above.
Sec. VI, we discuss the relevance of boundary condition
our outcomes, and the validity in our context of an appro
mation sometimes employed in the literature. Our conc
sions are then summarized in Sec. VII.

II. MODEL

Most nematic liquid crystals can be thought of as co
posed of rodlike molecules. A nematic state can be descr
by the order tensorQ, a symmetric, traceless, second-ra
tensor that measures how much the probability distribut
of the molecular long axis differs from being isotropic~see
pp. 56–57 of Ref.@8#!. SinceQ is a symmetric tensor, it can
be represented in the orthonormal basis of its eigenvec
$e1 ,e2 ,e3% as

Q5(
i 51

3

l iei ^ ei ,

where the eigenvaluesl i obey the constraint

l11l21l350

implied by the condition trQ50. Moreover, each eigen
value l i ranges in the interval@2 1

3 , 2
3 # ~see pp. 14–18 of

Ref. @9#!: the lower bound corresponds to the case where
molecules are on average orthogonal toei , whereas the up-
per bound corresponds to the case where the molecule
on average aligned alongei . In the isotropic phase,Q van-
ishes. When two eigenvalues ofQ coincide, the liquid crystal
is in a uniaxial state, andQ can be recast in the form

Q5sS n^ n2
1

3
I D ,

wheresP@2 1
2 ,1# is thescalarorder parameter, the unit vec

tor n is the nematicdirector, and I is the identity tensor.
Finally, when all eigenvalues ofQ are distinct, the liquid
crystal is in a biaxial state. According to Ref.@10#, thedegree
of biaxiality of Q can be defined as
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b2
ª126

~ tr Q3!2

~ tr Q2!3
, ~1!

which ranges in the interval@0,1#. In all uniaxial states,b2

50, while states with maximal biaxiality correspond tob2

51. Since trQ353 detQ, the states with maximal biaxiality
are precisely those where detQ50, that is, where at leas
one eigenvalue ofQ vanishes.

We suppose that a nematic liquid crystal occupies the
gion B bounded by two parallel plates 2d apart~see Fig. 1!.
Relative to the frame$ex ,ey ,ez% shown in Fig. 1,B is repre-
sented as the setB5$(x,y,z)PR3uxP@2d,d#%. We impose
uniaxial states at both plates. On the plate atx52d, the
nematic director is parallel toez , so that

Q5Q2
ªsbS ez^ ez2

1

3
I D , ~2!

wheresb is afixedscalar order parameter, which we will s
equal to the bulk equilibrium value fors. On the plate atx
5d, the nematic director is rotated by the anglef0 ~normal-
ized to be in@0,p/2#), so that

Q5Q1
ªsbS n0^ n02

1

3
I D with n0ªcosf0ez1sinf0ey .

~3!

In a purely uniaxial setting, the nematic director would tw
within the cell from the orientationez to n0 asx ranges from
2d to d. In general, there are two opposite such twists, w
one more strained than the other. They are mirror image
each other only forf05p/2, that is, when the boundar
orientations ofn are orthogonal. It is indeed the purpose
this paper to find the biaxial structure developed by both
these configurations and to seek other biaxial equilibri
configurations reminiscent of the one first discovered in R
@1# within a defect core, where two eigenvalues ofQ cross
each other and are eventually exchanged.

In general,Q is described by five independent scalar p
rameters. Here we exploit the particular symmetry of t
problem to reduce the number of parameters. The bound
valuesQ2 andQ1 are indeed independent of the coordina
y andz, and they both haveex as an eigenvector. By requir
ing these properties to hold forQ inside the cell, we arrive a
the representation formula~in terms of Cartesian compo
nents!

FIG. 1. A cell bounded by two parallel plates.
7-2
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@Q#5F 22q1 0 0

0 q12q2 q3

0 q3 q11q2

G , ~4!

whereq1 , q2, andq3 are functions ofx only. This represen-
tation automatically obeys the constraint trQ50. Hereafter,
we shall refer to Eq.~4! as theq representationof Q. The
parameterq3 measures the rotation around theex axis of the
eigenframe ofQ. The eigenvalue relative toex is l15
22q1, while the remaining eigenvalues are

l25q12Aq2
21q3

2, l35q11Aq2
21q3

2.

We often employ the notationq5(q1 ,q2 ,q3) to denote a
point in theq space. It follows from the bounds on the e
genvalues ofQ that all admissibleq’s lie inside the cone
with axis alongq1 defined by the inequalities

2
1

3
<q1<

1

6
, Aq2

21q3
2<q11

1

3
.

The origin of theq space corresponds to the isotropic st
(Q50). It is crucial to our analysis to identify in theq space
all uniaxial states. We find that they can be of one of t
types, either uniaxial with director along thex axis ~normal
to the boundary surfaces! or uniaxial with director in they-z
plane~in the plane of the boundary surfaces!. The line

q25q350 ~5!

represents uniaxial states of the former type, since alon
l25l3, while the conical surface

9q1
25q2

21q3
2 ~6!

corresponds to uniaxial states of the latter type: more p
cisely, l15l3 when q1,0, andl15l2 when q1.0. This
geometric representation of the uniaxial states was first
troduced in Ref.@11# and then used in Refs.@12,13# to clas-
sify both surface and bulk defects arising in nematic liqu
crystals. As we shall see, this representation plays a key
in detecting order reconstruction.

The boundary conditions~2! and ~3!, in theq representa-
tion, take the form

q1~2d!5
sb

6
, q1~d!5

sb

6
, ~7a!

q2~2d!5
sb

2
, q2~d!5

sb

2
cos 2f0 , ~7b!

q3~2d!50, q3~d!5
sb

2
sin 2f0 . ~7c!

Both pointsq(2d) and q(d) belong to the uniaxial cone
defined by Eq.~6!, for all values ofsb .
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III. FREE ENERGY

In this section, we build the free-energy functional that
stationary in all equilibrium configurations within the twis
cell B described above.

A. Bulk potential

In the classical Landau–de Gennes theory~see Ch. 2 of
Ref. @8#!, the bulk potential that describes a homogeneo
phase is given by

f bª
A

2
tr Q22

B

3
tr Q31

C

4
~ tr Q2!2. ~8!

Here B and C are positive constitutive parameters, whileA
depends on the temperatureT in the form A5a(T2T* ),
with a a positive constant andT* the nematicsupercooling
temperature. In theq representation, the invariants ofQ read
as

tr Q252~3q1
21q2

21q3
2!, tr Q3526q1~q1

22q2
22q3

2!,
~9!

and the bulk potential~8! takes the form

f b5A~3q1
21q2

21q3
2!12Bq1~q1

22q2
22q3

2!

1C~3q1
21q2

21q3
2!2. ~10!

In a homogeneous phase, the eigenvectors ofQ, though
arbitrary, are fixed in space. Letting them coincide with t
frame $ex ,ey ,ez%, we can adopt forQ the q representation
with q350, so thatq2 itself represents a measure of biax
ality. If for any order tensorQ, either uniaxial or biaxial, we
formally define the scalar order parameters through the
equation

tr Q25
2

3
s252~3q1

21q2
2!,

then for positives we can expressq1 as

q152
1

3
As223q2

2,

and Eq.~10! for f b ~with q350) can be written as

f b5
1

3 FAs22
2

9
BAs223q2

2~s2212q2
2!1

1

3
Cs4G . ~11!

For any givens.0, this function is minimized byq250,
and we conclude that in the absence of any externally
posed frustration, the only stable equilibrium states would
uniaxial. In this limit, Eq.~11! becomes

f 0~s!5
1

3
As22

2

27
Bs31

1

9
Cs4. ~12!

The function f 0 above possesses three stationary poin
one is attained ats50, and the other two are attained at
7-3
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s6ª
B6AB2224AC

4C
. ~13!

When A5A*ªB2/24C, s2 and s1 coalesce in a single
value s*ªB/4C, where the graph off 0 againsts has an
inflection point. The temperatureT** ªT* 1B2/24aC at
which this happens is called thesuperheatingtemperature.
At the temperatureTNIªT* 1B2/27aC,T** , the function
f 0 in Eq. ~12! has two distinct minimizers, with the sam
minimum, namely,s50 ands5s0ª4s* /3 ~see Fig. 2!. This
is the temperature where the transition from nematic to
tropic takes place. Finally, at the supercooling tempera
T* , the graph off 0 develops an inflection point ats50:
below this temperature, the isotropic state fails to be me
stable. We have found it convenient to introduce thereduced
temperatureu defined as

uª
A

A*
5

T2T*

T** 2T*
. ~14!

Thusu is the temperature below the supercooling point m
sured in units of the temperature range where both nem
and isotropic phases coexist; for low-molecular-weight liqu
crystals, this range is typically 1° –2° wide, depending
the purity of the sample.

FIG. 2. The uniaxial bulk potential functionf 0 against the scala
order parameters at the critical temperaturesT5T** ~superheat-
ing!, TNI ~nematic-isotropic transition!, andT* ~supercooling!, and
at a temperatureT,T* ~dashed line!. The parametersa50.20
3106 J/Km3, B57.23106 J/m3, and C58.83106 J/m3 corre-
spond to those measured for 5CB~4-cyano-48n-pentylbiphenyl! in
Ref. @14#.
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Other authors@7,15,16# instead prefer to definetª(T
2T* )/(TNI2T* ) as reduced temperature. It is easily se
that u58t/9. In our development below, we shall assum
thatu<1, so that an ordered phase exists in the bulk. By
~14!, we can recast Eq.~13! as

s6ªs* ~16A12u!.

The equilibrium value ofs, which would be preferred in the
undistorted bulk foru, 8

9 , is sb5s1 , and this is the value
we shall use forsb in both boundary conditions~2! and ~3!.

B. Elastic energy and equilibrium equations

The free energy consists of two distinct contributions: t
bulk potential f b , which inhibits departures ofQ from the
preferred uniaxial state~and its preferred degree of orienta
tional order!, and the elastic energyf e , which penalizes dis-
tortions in space of the eigenframe ofQ and spatial varia-
tions in the degree of order. Thus, the free-energy functio
F takes the general form

F@Q#ªE
B
~ f e1 f b!dV, ~15!

wheredV is volume measure. Here we adopt forf e the fol-
lowing one-constant approximation:

f eª
L

2
u“Qu2,

where L.0 is an elastic constant assumed independen
the temperatureT.

When Q is prescribed on]B, the equilibrium equations
for F can be obtained as follows. We perturbQ by setting

Q«ªQ1«U,

where U is a symmetric, traceless tensor field subject
Uu]B50. Heeding that bothQ andU are symmetric, we give
the first variation ofF the following expression:

dF@Q#~U!ª
dF@Q«#

d« U
«50

5E
B
$L“Q•“U1@AQ2BQ2

1C~ tr Q2!Q1lI #•U%dV,

wherel is an unknown Lagrange multiplier field. Integratin
by parts in the preceding integral and using the bound
conditions onU, we arrive at

dF@Q#~U!5E
B
@2LDQ1AQ2BQ2

1C~ tr Q2!Q1lI #•UdV,

whereDQ is the Laplacian ofQ. From the arbitrariness o
U, we conclude that
7-4
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2LDQ1AQ2BQ21C~ tr Q2!Q1
B

3
~ tr Q2!I50,

~16!

wherel has been determined by requiring the solutions to
traceless.

In the special case of interest to us,Q depends on the
single space variablex, and so Eq.~16! becomes

2LQ91AQ2BQ21C~ tr Q2!Q1
B

3
~ tr Q2!I50, ~17!

where a prime denotes differentiation with respect tox. By
taking the inner product of both sides of Eq.~17! with Q8,
we obtain the first integral

2
L

2
uQ8u21

A

2
tr Q22

B

3
tr Q31

C

4
~ tr Q2!252H,

~18!

whereH is an integration constant. This equation, which h
the appearance of a conservation law, has a further co
quence, which we record here for later use. Since (trQ2)9
52(uQ8u21Q•Q9), by Eqs.~17! and ~18!, we arrive at

L

2
~ tr Q2!952H12Atr Q22

5

3
B tr Q31

3

2
C~ tr Q2!2,

~19!

an equilibrium equation for trQ2 in which the invariant trQ3

also appears.

C. Nondimensional form

To prepare the way for the numerical computations to
performed in the following section, it is convenient to wri
in nondimensional form both the functionalF and the equi-
librium equations associated with it. To this end, we fi
introduce thebiaxial coherence lengthjb as

jbªA L

Bs1
5F 4LC

B2~A12u11!
G 1/2

.

This length clearly depends on the temperature. Apart fr
some nominal differences, this length is precisely the sa
as the one introduced in Ref.@16# ~see, in particular, the
Appendix there for a rationale behind this definition!. More-
over, we set

Q̄ª

1

s*
Q, s̄bª

sb

s*
, x̄ª

x

d
,

wheres* is the bulk equilibrium value ofs at the superheat
ing temperatureT** ~as defined in Sec. III A!, and we ex-
pressL in terms ofjb . We thus obtain
02170
e

s
e-

e

t

m
e

F@Q#5F0E
21

1 F S jb

d D 2

~A12u11!S dQ̄

dx̄
D 2

1
u

6
tr Q̄2

2
2

3
tr Q̄31

1

8
~ tr Q̄2!2Gdx̄,

whereF0ª3A* B2d/4C2. To avoid clutter, we drop all bars
thus arriving at the following nondimensional form of th
free-energy functional:

F@Q#ª
F@Q#

F0
5E

21

1 F jb
2

d2
~A12u11!uQ8u21

u

6
tr Q2

2
2

3
tr Q31

1

8
~ tr Q2!2Gdx. ~20!

In the q representation for the scaled order tensor,
dimensionless free energy takes the form

F@q#52E
21

1 H jb
2

d2
~A12u11!@3~q18!21~q28!21~q38!2#

1
u

6
~3q1

21q2
21q3

2!12q1~q1
22q2

22q3
2!

1
1

4
~3q1

21q2
21q3

2!2J dx, ~21!

and the equilibrium equations forF read

jb
2

d2
~A12u11!q195

u

6
q12

1

3
~q2

21q3
223q1

2!

1
1

2
~3q1

21q2
21q3

2!q1 , ~22a!

jb
2

d2
~A12u11!q295

u

6
q222q1q21

1

2
~3q1

21q2
21q3

2!q2 ,

~22b!

jb
2

d2
~A12u11!q395

u

6
q322q1q31

1

2
~3q1

21q2
21q3

2!q3 .

~22c!

This coupled system of ordinary differential equations is th
the nondimensional form of Eq.~17! and the cornerstone o
the numerical modeling to follow.

A special solution of this system deserves attention. Iu
528, thensb54 andq1(6d)5 2

3 . Indeed, for this specia
choice ofu, q1(x)[ 2

3 solves Eq.~22a!, as can be seen b
direct inspection. So, at least in this particular case, the
genvalue ofQ along the directionex remains constant acros
the cell. This will often be employed below as a comparis
case.
7-5
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IV. NUMERICAL MODELING AND EQUILIBRIUM
CONFIGURATIONS

For each fixed value of the twist anglef0, reduced tem-
peratureu, and dimensionless half-width of the cell,d/jb ,
we determine the solutions for the scalar fieldsq1 ,q2 ,q3 to
the equilibrium equations~22! subject to the boundary con
ditions ~7!. In general, Eqs.~22! have more than one solu
tion. First, the same boundary conditions could be obeyed
two twist solutions, corresponding to opposite rotations
the eigenframe ofQ across the cell. In addition, a third typ
of solution can be found in which the liquid crystal
uniaxial along the direction imposed by the boundary con
tions on the plates, but, in the neighborhood of the cente
the cell, it tends to become uniaxial in the direction norm
to the boundaries, namely,ex , with a negative order param
eter. Illustrations of these three types of solutions are gi
in Fig. 3, where both the eigenvalues and the eigenvector
Q are pictorially represented through ellipsoids.

Very good software tools are available for the numeri
modeling of problems such as the one at hand. For this
vestigation, we have relied uponMATLAB @24#, AUTO 97 @17#,

FIG. 3. Order-tensor ellipsoids against position across the c
in units of the biaxial coherence lengthjb , for three basic solutions
opposite twists~top and middle! and eigenvalue exchange~bottom!.
Ellipsoids are oriented along the eigenframe of the order tensorQ at
each point; their semiaxes are the eigenvalues ofQ appropriately
augmented and scaled to the largest eigenvalue at the boun
Parameters: twist anglef05p/2, reduced temperatureu528,
and dimensionless cell half-widthd/jb56.
02170
y
f

i-
of
l

n
of

l
n-

andAUTO 2000 @25#. MATLAB is a commercial scientific com
puting and visualization environment. With its high-lev
language syntax, wealth of mathematical library softwa
and integrated graphics, it is an excellent tool for the num
cal modeling of a wide array of problems. We have us
primarily the MATLAB graphics, as well as a code from i
ODE suite, bvp4c, for the solution of general nonlinear s
tems of ordinary differential equations.

The MATLAB BVP solver is not equipped for numerica
bifurcation analysis, and for that we have relied upon
AUTO package. This venerable code has been a mainsta
the numerical bifurcation and dynamical systems commu
ties for over two decades. ForODE boundary value problems
the package has the capabilities to perform parameter
tinuation, detection of bifurcation points, and stable nume
cal calculation of limit points. It is also capable of monito
ing auxiliary integral functionals, such as the free ener
and of generating a two-parameter locus of fold points.
have used all of these features to obtain the results we
cuss below.

V. BIFURCATION UNFOLDING

As anticipated in Sec. IV, solutions to Eqs.~22! are found
in three different classes. The members of two of them
semble a regular twist, whilst the members of the third cl
areexchangesolutions, here called thex solutions for short,
which mimic the solution of Palffy-Muhorayet al. @2# char-
acterized by a local biaxial transition. For every value
f0P]0,p/2 @ , the total twist of the director across the ce
for the two twist solutions is eitherf0 or p2f0: hereafter,
the former solutions will be referred to as thet2 solutions,
and the latter as thet1 solutions. Forf050, coherently
with the normalization adopted here, thet1 solution is ap
twist and the correspondingt2 solution is the uniform state
of the director. Forf05p/2 , t1 andt2 solutions are sym-
metric to one another, but there is no intrinsic way to t
which is which because they both exhibit the same to
twist. However, such an ambiguity plays no role in our d
velopment. Our calculations show that at2 solution always
minimizes the free-energy functionalF in Eq. ~15!, whereas
all t1 solutions are at most metastable, and allx solutions
are always locally unstable. A clear indication of this ins
bility is that an initial guess must be appropriately built
compute ax solution through a numerical parameter co
tinuation.

A. Polar plots

Recalling our discussion in Sec. III A, we can represe
solutions of Eqs.~22! by a curveC in theq space.C intersects
the loci ~5! and~6! wherever it attains a uniaxial state. Equ
tion ~7a! shows thatq1 has one and the same value on t
plates bounding the cell. Moreover, numerical solutions
Eqs.~22! reveal thatq1 is nearly constant across the cell. A
discussed in Sec. III A,q1 is indeed constant, when
u528. This suggests one to study the projection ofC onto
the (q2 ,q3) plane, for all solutions of Eqs.~22!. We shall
refer to such a projection as to thepolar plot of the solution.

ll,

ry.
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As will soon be shown, polar plots are crucial to understa
the patterns of orientational order for solutions in differe
classes. We see from Eqs.~7b!–~7c! that all polar plots must
pass through two points,P2 and P1 , on the circleq2

21q3
2

5sb
2/4, which is the (q2 ,q3) projection of the intersection

between the uniaxial cone~6! and the planeq15sb/6. We
choose polar coordinates (%,q) in the (q2 ,q3) plane so that
P2[(sb/2,0) andP1[(sb/2,2f0). Thus,P2 represents the
boundary condition on the lower plate, andP1 that on the
upper plate. Figure 4 shows typical polar plots foru528,
andf050.45p.

We see thatt2 solutions tend to become uniaxial acro
the whole cell, whend/jb increases. Moreover, they all re
side in the circular sector above the line segment joiningP2

andP1 , while botht1 andx solutions reside in the circula
sector below this segment. Upon decreasingd/jb , the single
t1 and x solutions approach each another until a critic
value is reached~e.g.,d/jb.3.33 for u528), where they
merge together. For lower values ofd/jb , only t2 solutions
exist. For a given value ofd/jb , the correspondingt2 solu-
tion is the absolute energy minimizer; the equilibrium so
tions with higher energy, in either classt1 or x, can relax to
it only by crossing the origin of the (q2 ,q3) plane: corre-
spondingly, the curveC would cross the uniaxial line~5! at
the point where the order reconstruction actually occurs
the cell. The line~5! thus separates the energy minimize
from all other equilibrium solutions.

A slightly different scenario occurs for the symmetric ca
wheref05p/2. Here,t2 andt1 solutions are symmetric
and so are their polar plots with respect to the li

FIG. 4. Polar plot ofq2 , q3 components of order-tensor equ
librium solutions. Parameters: twist anglef050.45p, reduced tem-
peratureu528, and several values of dimensionless cell ha
width d/jb<8. Upper curves correspond to less twisted solutio
t2 , approaching uniaxial states on the circumference asd/jb in-
creases. Lower solid curves correspond to more twisted solut
t1 , while lower dashed curves are eigenvalue-exchange solu
x. These merge in the heavy line asd/jb decreases to the critica
value d/jb.3.33. The arrows indicate in which sensed/jb is in-
creased for the different classes of solutions. The center of the
cumference corresponds to the whole family of uniaxial states w
negative order parameter described by Eq.~5!
02170
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q50, as shown in Fig. 5:x solutions now exist for values o
d/jb down to 0 and all their polar plots coalesce into the li
segment joiningP2 and P1 . As the cell thicknessd/jb is
decreased, twist solutions become more and more stra
and, correspondingly, more and more biaxial near the ce
of the cell, until a critical value is reached (d/jb.2.47 for
u528), where they merge with thex solution. Below this
threshold, no twist solution exists.

Furthermore, the limiting case wheref0→0 also de-
serves attention. Here, thet2 solution tends to represent th
uniform state across the cell, whereas thet1 solution tends
to be ap twist. Polar plots withf050 are shown in Fig. 6.
A pictorial way to obtain Fig. 6 from Fig. 4 is the following
We move the pointP1 along the circumference in Fig. 4
until it coalesces withP2 . Correspondingly, the polar plot
of all t2 solutions collapse into the singletonP[P2

[P1 , while the polar plots of botht1 andx solutions turn
around the origin. We see from Fig. 6 that the uniaxial li
~5! still exerts the same topological separation as above
in Fig. 4, there is a critical value of the cell thicknessd/jb at
which t1 and x solutions merge together. It turns out th
this threshold increases, as the intuition suggests: indeed
u528, merging of solutions occurs whend/jb.7.72.
Again, upon further decreasingd/jb , only t2 solutions sur-
vive.

However, thex solution seems somewhat artificial in th
context, as the eigenvalue exchange merely accommod
an effectivep rotation of the eigenframe ofQ via a biaxial
transition which occurs in a narrow region around the mid
of the cell. This rotation is shown in Fig. 7: the more th

-
s

ns
ns

ir-
h

FIG. 5. Polar plot ofq2 , q3 components of order-tensor equ
librium solutions. Parameters: twist anglef05p/2, reduced tem-
peratureu528, and several values of dimensionless cell ha
width d/jb ranging between 2.475 and 8 in the sense indicated
the arrows. Exchange solutions run along the horizontal axis fo
values ofd/jb . The remaining, symmetric curves correspond to
symmetric twisted solutions. These approach uniaxial states on
circumference asd/jb increases, and they merge into the exchan
solution asd/jb decreases to the critical valued/jb.2.47, below
which the twisted solutions fail to exist. The solutions in real spa
corresponding to the largest value ofd/jb considered here are illus
trated in Fig. 3.
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ratio d/jb increases, the narrower becomes the region wh
the reorientation takes place. This behavior can also be
in Fig. 6 where the polar plots of the exchange solutio
approach a peculiar curve in the limit case asd/jb→`: this
curve moves fromP along the upper-left quadrant until th
point (sb/2,p/2) is reached; then it suddenly jumps to t
opposite point (sb/2,3p/2) and then travels back toP along
the lower-left quadrant.

B. Bifurcation diagrams

Inspection of the polar plots also suggests how to cho
the parameter to capture the behavior of the solutions
bifurcation diagram. In fact, for a fixed value of the ce
thickness, along any polar plot the functionr(q2 ,q3)
ªAq2

21q3
2 attains its minimum in a single point. The func

tion r measures the distance of a solution from the unia
loci ~5! and ~6!: wherer50, the corresponding solution i
uniaxial along the directionex , orthogonal to the plates
wherer5sb/2, the solution is uniaxial along a direction pa
allel to the plates.

Given the role of topological separation played by t
origin of the (q2 ,q3) plane, we can introduce the followin
dimensionless bifurcation parameter:

rª6minr~q2 ,q3!,

where the minimum is computed along a polar plot, and
sign is positive fort2 solutions and negative for all other
Figure 8 shows some bifurcation diagrams, where the par
eter r is plotted against the cell dimensionless half-wid
d/jb , for u528 and three values off0, that is, f050,
0.45p, andp/2. Three families of lines correspond in Fig.

FIG. 6. Polar plot ofq2 , q3 components of order-tensor equ
librium solutions. Parameters: twist anglef050, reduced tempera
ture u528, and several values of dimensionless cell half-wid
d/jb<20. Solid curves correspond top-twist solutions, approach
ing uniaxial states on the circumference asd/jb increases. Dashed
curves correspond to eigenvalue-exchange solutions. These m
in the heavy line asd/jb decreases to the critical valued/jb

.7.72.
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to these values off0: they are labeled~a!, ~b!, and ~c!,
respectively, and all have three branches. The branch of~a! at
r 5sb/2, which equals 2 foru528, corresponds to the uni
form state with director alongex across the whole cell. The
negative branches of~a! represent the metastablep twist and
the correspondingx solution. The positive branch of~b! ex-
ists regardless of the value ofd/jb , and it approaches the
value r .0.313 whend/jb goes to 0. In this limit, allt2

solutions have a high degree of biaxiality in the center of
cell, while they become closer and closer to a pure unia
twist whend/jb is large. The correspondingt1 andx solu-
tions are represented by the negative branches of line~b!.
Upon increasingf0, the turning point where these solution
merge together moves towards ther axis that is indeed
reached whenf05p/2, where the bifurcation diagram turn
into the pitchfork~c!. In the jargon of bifurcation analysis
and singularity theory, we can say that the twist anglef0
provides auniversal unfoldingof the one-parameter, sym
metric pitchfork ~see, e.g., the review paper Ref.@18#, and
references therein!. The dotted curve in Fig. 8 is thespinodal
curvethat separates metastable states from unstable stat
can be viewed as the locus of the turning points of the d
gram, as a function off0.

rge

FIG. 7. Order-tensor ellipsoids against position across the c
in units of the biaxial coherence lengthjb , for three basic solutions
uniform uniaxial alignment~top!, p twist ~middle!, and eigenvalue-
exchange solution~bottom!. Ellipsoids are oriented along the eigen
frame of the order tensorQ at each point; their semiaxes are th
eigenvalues ofQ appropriately augmented and scaled to the larg
eigenvalue at the boundary. Parameters: twist anglef050, reduced
temperatureu528, and dimensionless cell half-widthd/jb514.
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One feature of the bifurcation diagram of Fig. 8 can
explained analytically: the asymptotic behavior oft2 solu-
tions whend/jb!1. Regardingd/jb as a perturbation pa
rameter in Eqs.~22!, and using the exact solutions of the
equations for the limiting case whered/jb50, we can prove
that r has the following parabolic behavior:

r 5
sb

2
cosf0H 12

1

2~A12u11!
S d

jb
D 2

3Fu

6
2

sb

3
1

sb
2

48
~315cos2f0!G J 1OF S d

jb
D 4G .

Similar computations have been performed for values
u!28; in particular, we have produced polar plots and
furcation diagrams foru5248 andu524899: their fea-
tures were found to be qualitatively the same as those sh
here, quantitatively, the turning point approaches ther axis
asu decreases.

VI. DISCUSSION

In this section we discuss two separate questions
could be raised quite naturally at this stage. One is ab
boundary conditions, which here have systematically b
taken as uniaxial on both plates. The other is about the
lidity of an approximation often used in the analysis of t
biaxial structure of defects, which here has systematic
been ignored.

A. Biaxial boundary conditions

The uniaxial boundary conditions imposed on the t
plates of the cell are represented by Eqs.~7!. We now alter
these equations to accommodate a special class of bi
boundary conditions. We leave the conditions forq1 un-
changed, while we write those forq2 andq3 as follows

FIG. 8. Bifurcation diagram ofr against the dimensionless hal
width d/jb of the cell, for several solution paths. Parameters:
duced temperatureu528, total twist angles:~a! f050, ~b! f0

50.45p, and~c! f05p/2. Curves: solid~metastable!, dashed~lo-
cally unstable!, and dotted~spinodal curve!.
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q2~2d!5
sb

2
~11«!, q2~d!5

sb

2
~11«!cos 2f0 ,

~23a!

q3~2d!50, q3~d!5
sb

2
~11«!sin 2f0 . ~23b!

In the q space, these boundary points live away from t
uniaxial cone~6! for every«Þ0; in particular, for«.0 they
are both outside this cone, while for«,0 they are both
inside it. The order tensorQ2 corresponding toq(2d) can
then be represented as

Q25sS ez^ ez2
1

3
I D1t~ex^ ex2ey^ ey!, ~24!

where

s5S 11
3

4
« D sb and t5

1

4
«sb . ~25!

It is clear from Eqs.~25! that for «,0 the molecules on the
lower plate are less oriented alongez than they are for«
.0: the boundary biaxiality introduced in Eq.~24! has a
disordering effect in the former case and an ordering effec
the latter case. The order tensorQ1 corresponding toq(d)
has the same eigenvalues asQ2 and an eigenframe rotate
by the anglef0 aboutex .

-

FIG. 9. Polar plot ofq2 , q3 components of order-tensor equ
librium solutions with special biaxial boundary conditions. Para
eters: twist anglef050.45p, reduced temperatureu528, param-
eter of biaxiality«520.2, and several values of dimensionless c
half-width d/jb<8. Upper curves correspond to less twisted so
tions t2 , approaching uniaxial states on the circumference asd/jb

increases. Lower solid curves correspond to more twisted solut
t1 , while lower dashed curves are eigenvalue-exchange solut
x. These merge in the heavy line asd/jb decreases to the critica
value d/jb.3.10. The arrows indicate for the different classes
solutions in which sensed/jb is increased.
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Figure 9 shows the polar plots in the (q2 ,q3) plane of the
solutions to Eqs.~22! subject to Eqs.~7a! and ~23!, for
«520.2 and f050.45p. Again, all solutions can be
grouped in three different classes, and their behavior ap
ently parallels that of the solutions for«50. In particular,
the uniaxial line~5! still separatest2 solutions from all oth-
ers: it must be traversed in any relaxation process star
from thet1 solution when this ceases to exist.

B. Lyuksyutov constraint

In Ref. @19#, Lyuksyutov proposed an approximate min
mization of the functional in Eq.~15!, which has been often
employed to explore the fine structure of defect co
@15,20#. This method relies on the observation that whene
in Eq. ~8! B!AAC, one can treat the trQ3 term in f b as a
small perturbation and first minimize the dominant part
the bulk potential, that is,

f b5
A

2
tr Q21

C

4
~ tr Q2!2,

thus obtaining

tr Q252
A

C
. ~26!

Then the modified free energy

F* @Q#5E
B
S L

2
u“Qu22

B

3
tr Q3DdV

can be minimized subject to constraint~26!. This approach,
though based on a rather crude approximation, make
easier to obtain analytic results from the Euler-Lagran
equations forF* , as shown, for example, in Refs.@15,21#.
Sometimes these approximate results have formed the b
for deeper numerical explorations of the comple
Landau–de Gennes model@22,23#.

The question then arises of probing the validity of co
straint ~26! in the problem solved here. This issue is inde
related to the growth of the degree of biaxiality within th
cell. Since trQ353 detQ, it follows from Eqs.~1! and ~19!
that on the equilibrium configurations forF, Eq. ~26! is sat-
isfied only if detQ is a specific constant. Thus, the lack
uniformity in the graph of detQ somewhere within the cell is
an unmistakable sign that the Lyuksyutov constraint can
be valid there. As shown in Fig. 10, the graph of detQ across
the cell is quite different for at2 and ax solution: it is more
uniform in the center than near the plates on at2 solution,
while it is more uniform near the plates than in the center
a x solution. Moreover, for ax solution the less uniform
detQ is, the more it approaches zero, that is, the higher is
degree of biaxiality. In other words, the Lyuksyutov co
straint is violated just to allow more biaxiality in the cell.

VII. SUMMARY

By use of the classical Landau–de Gennes theory
studied an equilibrium problem within a nematic cell whe
the plates enforce uniaxial boundary conditions with twis
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directors. For a sufficiently large separationd of the plates,
there are three different solutions to this equilibrium pro
lem: two of them exhibit opposite twists of the eigenframe
the order tensorQ, whilst the third one exhibits an exchang
in the eigenvalues ofQ. The less twisted solution amon
these is always the energy minimizer; it exists for all valu
of d. On the contrary, the other two solutions exist only ifd
is greater than a critical valuedc , in the range of a few
biaxial coherence lengths: ifd.dc , the exchange solution is
locally unstable, while the more twisted solution is me
stable. Atd5dc , these two branches of solutions merge
gether and both disappear. When this happens, the sy
relaxes back to the energy minimizer with a jump in the fr
energy: an order reconstruction then takes place on a plan
the cell where the order tensor traverses a uniaxial state
negative scalar order parameter and director orthogona
the plates of the cell.

This scenario applies to every choice of the total tw
angle across the cell butp/2: when the two boundary direc
tors are at right angles, which is the case most studied in
literature, the two opposite twisted solutions merge conti
ously into the exchange solution at a critical value of t
distance between the plates. Such a behavior, actually
flecting the higher symmetry in thep/2 twist, is, however,
rather peculiar, as it isunfoldedby any perturbation in the
alignment of the boundary directors. All transitions studi
in this paper occur when the distance between the plate
reduced down to a few biaxial coherence lenghts. Wh
these distances are indeed very small, the outcomes of
study are in principle applicable to confinements induced
some external field.
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FIG. 10. The graph of detQ through the cell for both at2 and
a x solution ~dashed and solid line, respectively!. Parameters: re-
duced temperatureu528, twist anglef050.45p, and dimension-
less half-width of the celld/jb58.
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@7# A. Šarlah and S. Zˇumer, Phys. Rev. E60, 1821~1999!.
@8# P.G. de Gennes and J. Prost,The Physics of Liquid Crystals

2nd ed.~Clarendon Press, Oxford, 1993!.
@9# E.G. Virga,Variational Theories for Liquid Crystals~Chapman

and Hall, London, 1994!.
@10# P. Kaiser, N. Wiese, and S. Hess, J. Non-Equilib. Thermod

17, 153 ~1992!.
@11# P. Biscari, G. Capriz, and E.G. Virga, Liq. Cryst.16, 479

~1994!.
@12# P. Biscari and G.G. Peroli, Commun. Math. Phys.186, 381

~1997!.
@13# P. Biscari, G.G. Peroli, and T.J. Sluckin, Mol. Cryst. Li
02170
.

.

Cryst. Sci. Technol., Sect. A292, 91 ~1997!.
@14# H.J. Coles, Mol. Cryst. Liq. Cryst. Lett.49, 67 ~1978!.
@15# S. Kralj and E.G. Virga, J. Phys. A34, 829 ~2001!.
@16# S. Kralj, E.G. Virga, and S. Zˇumer, Phys. Rev. E60, 1858

~1999!.
@17# E.J. Doedel, A.R. Champneys, T.F. Fairgrieve, Y.A. Kuznets

B. Sandstede, and X. Wang, Concordia University, 1997, av
able by FTP from ftp.cs.concordia.ca in the directory pu
doedl/auto

@18# K.A. Cliffe, A. Spence, and S.J. Tavener, Acta Numerica9, 39
~2000!.

@19# I.F. Lyuksyutov, Zh. Eksp. Teor. Fiz.75, 358 ~1987! @Sov.
Phys. JETP48, 178 ~1978!#.

@20# E. Penzenstadler and H.-R. Trebin, J. Phys.~Paris! 50, 1027
~1989!.

@21# R. Rosso and E.G. Virga, J. Phys. A29, 4247~1996!.
@22# E.C. Gartland, Jr. and S. Mkaddem, Phys. Rev. E59, 563

~1999!.
@23# S. Mkaddem and E.C. Gartland, Jr., Phys. Rev. E62, 6694

~2000!.
@24# MATLAB is a registered trademark of The MathWorks, In

http://www.mathworks.com
@25# See http://sourceforge.net/projects/auto2000
7-11


